Understanding and Applying Information from a Soil Test, Part 4: Boron, Chloride, Copper, Iron, Manganese, Molybdenum, Nickel, and Zinc

Allan Fulton, UC Farm Advisor, Tehama County and Roland D. Meyer, Extension Soil Specialist Emeritus This article (Part 4) discusses micronutrients and the use of soil tests to evaluate their levels in orchard soils.  Micronutrients are essential to almonds and other nut crops, yet are required in much smaller amounts than macronutrients such as nitrogen (N), phosphorus (P) and potassium (K) or secondary nutrients  such as calcium (Ca), magnesium (Mg), or sulfur (S).  The eight micronutrients are boron (B), chloride (Cl), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), and zinc (Zn).  They fulfill important roles in the plant.  For instance, zinc is needed for plant cell expansion and it influences pollen development, flower bud differentiation, and fruit set while boron is a building block for the plant cell wall and strongly influences pollen tube germination and growth.  Flower abortion in almond and walnut has occasionally been associated with boron deficiency.  Nickel has recently been determined to be an essential nutrient and there are no known deficiencies in California. Zinc, iron and manganese deficiencies are not as commonly found in the Sacramento Valley as in the San Joaquin Valley.  Zinc deficiency is most common in almond and other nut crops.  Other micronutrient deficiencies that are occasionally seen in almond include B, Fe, and Mn.  Copper (Cu), Mo, and Ni deficiencies have not been documented in almonds; however, Cu deficiency is common in pistachios. Five of the micronutrients (Cu, Fe, Mn, Ni, and Zn) largely exist in the soil as positively charged metal cations bound as minerals or adsorbed to the surfaces of colloids or soil particles.  Several factors in orchard soils may affect the solubility and availability of these metal cations to trees.  Soil pH greater than 7.5 has the major influence of reducing the tree availability of

Read More

Soil Salinity and Leaching for Almonds

An earlier post discussed proper soil sampling methods. By now, those results should have been received and reviewed. Almond trees are relatively sensitive to sodium, chloride, and boron. Yields are impacted when average root system salinity increases above 1.5 dS/m, with research indicating a 19% decrease in potential yield with every 1.0 dS/m increase. This yield reduction is due to the osmotic effects of the salts, which basically makes the tree “work harder” for water reducing growth and vigor. If excess salts continue to accumulate within the rooting zone, trees will ultimately uptake the salts and cause tissue toxicity. The salts of primary concern are sodium, chloride, and boron. A leaching program should be implemented when EC of the entire rooting depth exceeds 1.5 dS/m or sodium, chloride, and boron exceed  an exchange saturation percentage of 5%, 5 meq/l, and 0.5 mg/l, respectively.

Read More

Well Water Analysis to ID Salinity Issues

There will be an increase reliance on groundwater for 2014. Wells that have been typically relied on to subsidize water allocations are now providing the primary source of water for the drought stricken almond orchards. If using a well, it is important to sample the water. Sampling will determine the characteristics of the water such as dissolved salts, pH, and major cations and anions. Sampling should be performed regularly, and more frequently if well performance or pumping depth has changed. 

Read More