Almond Drought Management: 2021 Update

Drought conditions are forecasted to persist into 2021 for California. Although almonds are relatively tolerant to drought from a survival standpoint, yields are impacted when water applications are reduced. To minimize this impact, the water use strategy that accounts for available water resources must be developed and applied to the orchard operation. These resources include contributions from stored soil moisture, rainfall, wells, and surface water resources.  Impact of water stress on almonds. Reduced water applications affect both in-season and future yields. In-season water stress reduces gas exchange, affecting the amount of energy that can be directed into kernel development. This often leads to reduced kernel size and weight, an increase in shriveled kernels, and minimal growth. Typically, nut set is unaffected. Although not exactly clear, the relationship between in-season crop loss and water stress is around 1 to 0.7-1.0, meaning that for every percent of reduced water application leads to the same percentage of crop loss (i.e. a 10% water deficit leads to 7-10% crop loss). Please note that this relationship isn’t exactly defined, and these numbers are estimates. Moderate to severe deficits will also affect next season’s crop. This crop loss is due to the reduced spur positions from the lack of growth and the reduced carbohydrate reserves going into floral bud development. This leads to reduced nut set. Nut weight and size will only be affected if in-season curtailments continue. . Field observations suggest that water shortage in a given year will have a greater impact on crop yields the following year, where the relationship of water stress (from the previous season) and crop loss approaches 1:2. This means that for every percent of reduced water application in year one, year two’s crop will be reduced by about 2% (i.e. a 10% water deficit leads to 20% crop

Read More

Drought and Almonds: Spring Considerations

The current drought conditions faced by California will impact the agricultural industry. Annual precipitation, snowpack, and reservoir conditions are well below average for this time of the year. Although there is some rain in the forecast, future rain and snowfall amounts are hard to predict. Furthermore, spring storms tend to come in warmer temperatures, leading to more rain but less snow at lower elevations. Although we cannot control the weather, there are things we can do to improve the use of water resources. These practices will improve the use efficiency of on-farm water resources. They also include strategies to help capture more water from spring rain events. Lastly, implementing practices now will provide on-farm data for future mitigation strategies as the Sustainable Groundwater Management Act (SGMA) comes into full enforcement. Start timing. Most farm operations begin to irrigate too early. This occurs even in low rainfall years. Stem water potential (SWP) or other plant-based monitoring systems are strongly recommended to help determine start timings in the spring. With SWP, recommendations are to wait to at least 2 bars more negative than baseline (remember, SWP is read in negative numbers). This will most likely lead to an irrigation timing around early- to mid-April, depending on leaf-out date. A study demonstrating this method was established in a ‘Butte’/’Padre’ located near Delhi, CA in a very sandy soil. The trial was established in the drought year of 2014-2015 and continued through 2017. Within this study, the delayed start to the irrigation did not impact yield in comparison to the grower standard. The dates for the first irrigation were between April 22nd – 26th, for all three years. Since ‘Butte’ and ‘Padre’ are later leafing cultivars, I suspect that ‘Nonpareil’ and other earlier leafing cultivars will be 1-2 weeks earlier. This delay saved between

Read More

Regulated Deficit Irrigation: Is it appropriate for your operation?

Regulated deficit irrigation is the practice of reducing irrigation to obtain some type of desired stress level. This practice is often used during the initiation of the hull-split period to reduce hull-rot strikes. It also has been utilized during periods of water shortages to save 5-15% of the seasonal water use of almond. Due to the limited effect on yield, as well as the benefits, it has been advocated for application within orchards by the University and industry (including myself!). This practice, however, can have negative impacts when applied incorrectly and should only be used if deemed appropriate. In theory, this practice is easy to apply. Water application rates should be cut to achieve -15 bars stem water potential for two weeks preceding the onset of hullsplit (e.g. Blank split). This stress should be maintained at this level for this period. At the end of the two weeks, regular irrigation resumes and the orchard prepares for harvest. The difficulty in application has everything to do with accurately monitoring plant stress. Every orchard and orchard practice creates a different approach in application. For example, assuming similar irrigation levels, stress levels achieved in a mature orchard planted on sandy soil will occur in a shorter time frame than an orchard on a heavier clay loam. Every orchard site requires careful monitoring to determine when to cut and resume full irrigation. I have observed numerous orchardists apply tree stress only to see a reduction in kernel yield. This is due to ongoing gains in nut weight that occur between the onset of hull-split and harvest. If the tree is significantly stressed during this period, the conversion of carbon to fats is reduced, impacting the final crack out percentage. One closely monitored orchard in which I worked, demonstrated a 10-15% reduction in kernel weights

Read More

Determining Orchard Water Needs With Yields

In delivering workshops on irrigation (and drought) management, there are always a few questions on how to estimate canopy coverage without the use of special equipment. Not being content with the typical answer of “Use your best guess,” I began to review the research, and found that an estimate of photosynthetically active radiation (PAR) (also known as mid-day light interception) can be calculated from orchard yields. This question was asked because in a water short year, the available water needs to be spread out evenly as the respective % of evapotranspiration. This following will help determine how much water your trees are using.

Read More

Podcast: Irrigation Management for Almonds in a Drought Year

Owen Taylor (from AG Fax) and I created a podcast to discuss irrigation strategies for a drought year. Topics covered within the podcast include: How much water do almonds need? What happens if they do not receive the correct amount of water?  How do almonds manage reduction in water applications? Tools to help with managing irrigations. Managing irrigations with varying water availability. (85-100% of ETc, 65-85% of ETc, >65% of ETc) Using groundwater to subsidize water use. This is my first podcast, so I hope you find it educational as well as useful. Click here. It is 20 minutes in length, but one can jump to their topic of interest. More information can be found at UC Drought Management Website.

Read More