AUTHORS NOTE: The following article discusses salinity management considerations for FINE TEXTURED SOILS (e.g. loams, silts, and clays). This is a follow-up to the previous article, “Salinity Management for Sandy Soils.” For the most part, this article describes issues with the WEST SIDE of the San Joaquin Valley. NOT ALL SOILS ARE THE SAME. Please note that the following guidelines may need site-specific adjustments. Starting with the soil, we often use the term cation exchange capacity (CEC), which is the amount of cations (positively-charged ions like sodium, magnesium, calcium, potassium, etc.) that can bind to the soil particle surface. In fine textured soils across the State, CEC values can be very high, with values ranging between 15-40 meq/100 g of soil. Generally, sandy loams are in the teens through 20s, and silts and clays are in the 30s to 40s. This CEC value is important as it indicates the amount of cations the soil particles can hold. The higher the CEC, the more cations that stick to the soil, preventing them from entering the soil water (soil water is the amount of water that is held between soil particles – it is what the tree drinks), reducing salt exposure to the roots of the tree. Regardless of the CEC, once the soil is saturated with cations, the excess will stay within the soil water. As soil salinity increases, the tree’s roots salt exposure is increased. High soil salinity affects the osmotic movement of water, and this impacts the tree roots’ uptake of water (e.g. essentially making the tree work harder for water), leading to eventual toxicity. Salt toxicities within fine textured soils can vary based on the element involved. Chloride toxicity can occur rapidly, showing up within a year or two when applying poor quality water. This is due to chloride being an anion, and due