Shaker damage is commonly observed across orchard operations. This damage occurs when the force of the shaker is greater than the strength of the bark, causing it to tear away from the tree. The obvious damage not only impacts tree vigor, but also provides an opportunity for infection by wood canker fungi which can kill the tree. If the shake is properly timed and executed, shaker damage can be greatly reduced (and even eliminated) within an orchard. A common misconception is that trees that are kept too wet during the harvest period will be damaged by the harvesting process. Interestingly, this has never been supported in research nor found to be consistently true across operations. Research in the mid 90’s by Gurusinghe and Shackel found that withholding irrigation during July through harvest did not reduce bark damage of the trees. To further elaborate, they found no difference in bark strength with respect to shaker damage for almond trees grown under various irrigation treatments. Irrigation treatments included a wet treatment and dry treatment, in which mid-day stem water potential (SWP) was maintained at -9 bar and -20 bar, respectively, through the month of July/August. Despite this range in tree water status, both treatments exhibited the same gradual increase in bark strength through July and August. Based on this, the researchers concluded that water stress did not influence the timing or rate of tree bark strengthening. Based on the lack of direct effect of moisture status on tree bark strength, it is thought that the damage observed in wet areas of the orchards is most likely due to the delays in ripening. Research has found that decreased water stress (Goldhamer and colleagues, 2006) and high nitrogen status (Saa and colleagues, 2016) both  delay ripening. These trees, when shaken at the same time