Technology Corner: Q&A w/Tule Technologies

EDITOR’S NOTE: This entry is part of a series to highlight a new technology related to almond and tree nut production. The question/answer format is set to focus more on the technical aspects and application of the technology. In many articles, I discuss the importance of irrigation. With that in mind, I though I would reach out to a company that assists with irrigation scheduling based on site-specific data: Tule Technologies. Thanks to Valerie Bednarski for taking the time to answer my questions. Tule is an irrigation technology that determines site specific water use for a specific crop. How does this technology work? Tule measures the actual evapotranspiration (ET) of your orchard. We are able to do this using the Surface Renewal Method that was developed at the University of California at Davis (Paw U et al. 1995; Snyder et al. 1996; Shapland et al. 2012a and 2012b; Shapland et al. 2014). ET is the process of evaporation from plant and soil surfaces and from within plant tissues (i.e., water movement through stomata). In most modern agricultural systems, ET is the dominant process of water loss from a field. (Editor’s note: more info on ET here) What equipment is installed, and resources are used to determine water use? The Tule Sensor is installed in the orchard and is positioned above the canopy. The sensor is able to measure the amount of evapotranspiration from the orchard based on air movement.  As the wind moves over your orchard, it picks up the water that transpires from the trees and carries it to our sensor. This is how we are able to measure the crop water use over a broad area. An installed pressure switch is fitted to the irrigation system. This provides a direct measurement of irrigation durations. Using site specific irrigation specifications,

Read More

Water Use Efficiency: Irrigating for the Highest Crop per Drop

Written by David Doll (UCCE Merced County) and Allan Fulton (UCCE Tehama County) This past week I presented on our preliminary findings of the water production function trials underway across the state. Highlights included the release of some newer crop coefficients that were determined using eddy-covariance stations placed in the North and South, discussion on water needs, and the impact of water stress on crop growth. Of most interest was the crop coefficients, which were higher than what most operations use, and led to the questions of the need for that much water. Crop coefficients (Kc) are derived to estimate ET for various crops as they develop over the course of a season.  Kc’s are developed under conditions where soil moisture is not limited and the crop is not stressed at all.    So, they represent maximum ET or water use.  . In the case of almonds, there have been several recent efforts to determine these values (see below). Various methods have been used ranging from simpler soil-water balance to more advanced biometeorologic eddy-covariance measurements. All of these have led to significantly higher calculated Kc’s and crop ET, with one set suggesting that around 60″ of water was needed in Bakersfield conditions. It is important to keep in mind that ET does not equal irrigation need.  The two will be more similar in almond growing areas with lower rainfall and more different in higher rainfall areas.  Water holding capacity of orchard soils and root depth will also influence the relationship between ET and irrigation need.   Even increases in production do not necessarily correspond with higher ET and more irrigation. There is increasing evidence that when given the conditions, “luxury consumption” of water will occur. In other words, the water demand is present, but crop load does not increase. This highlights the value of

Read More